

ALTERNATIVE MARINE FUELS IN LIGHT OF CARBON EMISSION REDUCTION TARGETS – 2ND OF APRIL 2021

S Centre for Research-based Innovation

The Research Council of Norway

Dr. Elizabeth Lindstad, Chief Scientist SINTEF Ocean AS

Emission regulations

- Current regulations:
 - NO_x and SO_x regulated due to human health and local pollution
 - CO₂ regulated due to global warming through IMO's MARPOL Annex VI convention.
 - IMO regulations are on a Tank-to-Wake (TTW) basis
- IMO is now under increased pressure to
 - Also regulate other GHG gases, i.e. un-combusted methane (CH₄) and N₂O
 - Include the LCA of fuels on a Well-to-Wake (WTW) basis to avoid unintended consequences of the current regulations

The pressure for including all GHG's in IMO regulations is due to increased CH₄ amount in the atmosphere, and its around 20% share of annual GHG impact.

Total man-made GHG emissions in 2010, expressed in CO₂ equivalents (IPCC 2014)

Source: Lindstad et al 2020 compiled from:

MacFarling-Meure, C., et al. (2006); CSIRO Oceans & Atmosphere and the Australian Bureau of Meteorology (2020).

GHG intensity and sustainability of all energy used onboard ships in a well-to-wake (WTW) perspective versus tank-to-wake (TTW) as is

- We compare MGO and diesel engines versus LNG and Dual Fuel Diesel engine or Dual Fuel Otto engine.
- With Tank-to-Wake "AS IS" the advantage (in the IMO systems) is 25 % compared to MGO
- With Well-to-Wake (WTW) "TO BE" the advantage of LNG DF-Diesel is reduced from 25% to 16%, and with DF-Otto its reduced from 25% to only 5%

forskningsdrevet

Assessing Alternative Fuel PATHWAYS with focus on GHG, Energy usage and Cost, in a Well-to-Wake perspective

- Conventional fossil fuels
- Biofuels
- Hydrogen and ammonia (conventional and E-fuels)
- Synthetic E-fuels (gaseous or liquid fuels produced from hydrogen and carbon captured by using renewable electricity)
- Electric power from batteries charged from the grid

Calculating Well-to-Wake GHG emissions [WTW = WTT + TTW]

			HFO &	VLSFO	MGO	LNG	LNG	MGO	MGO
	2 - stroke engir	nes	Scrubber			DF	DF	DF	DF
			Diesel	Diesel	Diesel	Diesel	Otto	Diesel	Otto
			engine	engine	engine	engine	engine	engine	engine
	[1] CO_2 emission factors	g CO2 / g fuel	3.114	3.176	3.206	2.75	2.75	3.206	3.206
	[1] Low Calorific Value	MJ/kg	40.2	41.0	42.7	49.2	49.2	42.7	42.7
	[1] CH ₄ - GWP100	CO2 e				30	30		
	[1] CH ₄ - GWP20	CO2 e				85	85		
	[2] Thermal engine efficiency	%	50 %	50 %	50 %	50 %	49.2 %	50 %	47 %
	[3] Compared to Diesel engine	%				100 %	98 %	100 %	94 %
	[3] SFOC - Main fuel	Gram/kWh	179.1	175.6	168.6	145.3	147.6	168.6	179.4
	[2] SFOC - Pilot Fuel	Gram/kWh				1.5	1.5		
	[2] Methane Slip	Gram/kWh				0.25	2.5		
	[3] TTW - GWP100 CO ₂ eq.	Gram/kWh	558	558	541	412	486	541	577
	[3] TTW - GWP20 CO ₂ eq.	Gram/kWh	558	558	541	426	623	541	577
	[2] WTT - GWP100 CO ₂ eq.	Gram/MJ	9.6	13.2	14.4	18.5	18.5	14.4	14.4
	[3] WTT - GWP100 CO ₂ eq.	Gram/kWh	69	95	104	133	135	104	110
	[2] WTT - GWP20 CO ₂ eq.	Gram/MJ	14.1	19.6	20.8	27.9	27.9	20.8	20.8
	[3] WTT - GWP20 CO ₂ eq.	Gram/kWh	102	141	150	201	204	150	160
	[3] WTW - GWP100 CO ₂ eq.	Gram/kWh	627	653	644	545	621	644	687
	[3] WTW - GWP20 CO ₂ eq.	Gram/kWh	659	699	690	626	827	690	737
	[3] WTW - GWP100 in % of MG	60	97 %	101 %	100 %	85 %	96 %	100 %	107 %
	[3] WTW - GWP20 in % of MG	60	95 %	101 %	100 %	91 %	120 %	100 %	107 %

Example from 2-stroke engine:

[1] Fuel specifics and GWP values for methane are consensus values

[2] References values:

 Thermal efficiency of 50% (2-stroke engines) minus the methane slip for all engines based on Lindstad et al. (2020)

 Well-to-Tank values for HFO & Scrubber based on Concawe (2012, 2018), Lindstad (2019), CE-Delft (2020)

 Well-to-Tank values for VLSFO, MGO and LNG reflect a consensus Thinkstep (2019), ICCT (2020); Lindstad and Rialland (2020)

^[3] Calculated values

Conventional Fuels: comparing GWP20 and GWP100, i.e. short term (20 years) versus long term (100 years) impact

WTW for 2-stroke engines

Note that: Methanol and LPG only included in GWP 100 figure.

7

Bio-fuels

e State-of-the-Art technologies.

Source [1] is the *State-of-the-Art technologies, measures, and potential for reducing GHG emissions from shipping* study (Bouman et al., 2017).

Source [2] is *The Role of Sustainable Biofuels in Decarbonising Shipping* (SSI, 2019) presented at Cop 25 in December 2019.

Sources for [3] are: Thinkstep (2019), for the basic Biogas WTT; and Lindstad (2019), for the impact of un-combusted methane, which is the same level as for fossil fuels (see LNG figures, previous slide)

MEPC 75 submissions arguing for including all GHGs and WTW emissions for all fuels

- ISWG 7/3 FOEI, WWF, Greenpeace, Pacific Environment, Clean Shipping Coalition: Propose to include all GHG emissions including methane into EEDI.
- ISWG-GHG 7/3/1 SGMF (The Society for Gas as a fuel): To further reduce GHG, they suggest to add methane by means of a CO₂ eq. in relevant IMO measures and guidelines, including EEDI.
- ISWG-GHG 7/5/1 EUROMOT: To achieve the IMO GHG reduction targets, a significant improvement of lifecycle GHG intensity of marine fuels is required.
- ISWG-GHG 7/5/5 CESA (European shipyards associations): LCA of all alternative fuels are needed and the current EEDI is not capable of handling the increased portfolio of alternative fuels.
- ISWG-GHG 7/5/6 IMarEST (membership org. as RINA and SNAME): Pressing need for IMO take a whole life cycle approach of alternative fuels to avoid unintended consequences (increased GHG emissions).
- ISWG-GHG 7/5/9 EU member states and EU Commission: The need for development of LCA guidelines to estimate WTW emissions of alternative fuels.

Methodology to calculate the life cycle, well-to-wake (WTW) Greenhouse gas (GHG) emissions of fuels used onboard ships

- These guidelines propose a methodology to calculate the life cycle, well-to-wake (WTW) GHG emissions of both conventional fuels and any other alternative energy sources used to power ships.
- They are a result of a 15 months long process; Involving EC, Member states, Environmental NGO's, Engine and Technology Provides, Oil & Shipping companies, Research (SINTEF Ocean, MARIN)
- The next foreseen steps are:
- EC to introduce the LCA submission ISWG GHG 7/5/9 during the IMO informal meeting on LCA in mid-April;
- EC and MS to support discussion on LCA during ISWG-GHG 8 and MEPC76;
- EC with the support of ESSF and MS to prepare a [Union] submission on the LCA for MEPC77 (late 2021)

Methodology to calculate the life cycle, well-to-wake (WTW) Greenhouse gas (GHG) emissions of fuels used onboard ships

IMO regulatory tools are and will be based on the IMO Data Collection System (DCS). Under DCS every ship's total GHG emissions is calculated as per the following formula:

Total fuel consume $(t) * CF_{TTW}(\frac{t CO2}{t fuel})$

- Where, $CF = Fuel mass to CO_2 mass convertor at the Tank-to-Wake (TTW) level.$
- The following simple formulas offer a new *life-cycle carbon-equivalent factors* (LCCF) covering the to replace the conventional TTW carbon factors (CF) that have been used in existing regulatory instruments. This simple approach enables the operators and the regulators to keep on using the existing fuel consumption data:

$$Total WtW Emissions(t CO2eq) = \sum_{i}^{n-engine} \sum_{j}^{m-fuel} (M_{ij} * LCCF_WtW_fuel_{ij}) + \sum_{i}^{n} (E_i * LCCF_electricity_i)$$

The LCCF will make a large difference for Hydrogen and Ammonia

With today's CF factors based on TTW the source and its production pattern do not count, the value is just Zero despite that it is only the E-type which has Zero emissions:

- From electrolysis with renewable energy
- From steam reforming of natural gas
- From electrolysis with EU-el-mix

WTW - Gram CO₂eg. per kWh - GWP100 European El-mix today --> Green is used for 100% renewable

% of MGO

WTT

From Gram CO₂eq. per kWh and MJ to CO₂eq. per 1 kg Fuel

- MGO: (14.4 + 75.1) Gram CO₂ eq./MJ * 3.6 MJ/kWh / 50% thermal efficiency = (104 + 541) Gram CO₂ eq./kWh * 1000gram /168.6 gram/kWh = 3 825 Gram CO₂
 MGO a *carbon-equivalent factors* (LCCF) = 3.8 The old CF = 3.2
- LNG DF (Otto): WTT + TTW + Methane Slip (133 + 404 + 2.5*30) Gram CO2 eq./kWh * 1000gram /145.2 gram/kWh = 4 214 Gram CO2 LNG&DF-Otto engine a *carbon-equivalent factors* (LCCF) = 4.2 The old CF = 2.75
- Liquid Hydrogen: WTT + TTW (151 + 0) Gram CO₂ eq./MJ * 3.6 MJ/kWh / 50% = (1088) Gram CO₂ eq./kWh * 1000gram /60 gram/kWh = 18 133 Gram CO₂
 H2 from Natural Gas a *carbon-equivalent factors* (LCCF) = 18.1 The old CF = 0

Life-cycle carbon factor (LCCF) for fuel use by mass (tonne CO2eq/tonne fuel) – columns in grey font colour are only for informative purposes.										
Fuel and engine types	WTT (g CO2e/MJ - 100 yrs) (inc. LUC)	LCCF_WTT (t CO2eq/t fuel)*	TTW (t CO2/t fuel)	TTW engine slip (t CO2eq/t fuel)**	LCCF_TTW (t CO2eq/t fuel)**	LCCF_WtW (t CO2eq/t fuel)***	VLSFO equivalent (mass basis)	Engine slip factors (%)**	Energy density by LHV (MJ/kg)	
HFO	9.6	0,41	3.11	0	3,11	3,5	3,4		40,2	
MGO	14,4	0,61	3,2	o	3,2	3,8	3,7		42,7	
VLSFO	13,2	0,54	3,17	0	3,17	3,7	3,7		41	
LNG (DF high-pressure 2 stroke)	18,5	0,91	2,75	0,06	2,81	3,7	3,1	0,2%	49,2	
LNG (DF low-pressure 2 stroke)	18,5	0,91	2,75	0,61	3,36	4,2	3,5	1,7%	49,2	
LNG (DF low-pressure 4 stroke)	18,5	0,91	2,75	1,13	3,88	4,7	3,9	3,1%	49,2	
H2 (natural gas)	151,0	18,12	0	0	0	18,1	6,2		120	
H2 (renewable electrolysis)	0,0	0,00	0	0	0	0,0	0		120	
NH3 (natural gas)	121,0	2,25	0	0	0	2,3	5		18,6	
NH3 (renewable electrolysis)	0,0	0,00	0	0	0	0,0	0		18,6	
Methanol (natural gas)	31,3	0,62	1,38	0	1,38	2,0	4,1		19,9	
Methanol (renewable electrolysis + DAC)	0,0	0,00	0	0	0	0,0	0		19,9	
E-diesel (with RES & DAC)	0,0	0,00	0	0	0	0,0	0		42,7	
Biodiesel (Rapeseed) (incl. LUC)	115,1	4,28	0	0	0	4,3	4,7		37,2	
Biodiesel (Palm) (incl. LUC)	306,7	11,41	0	0	0	11,4	12,6		37,2	
BioLNG (Organic waste) (DF high-pressure 2 stroke)	13,8	0,68	0	0,06	0,06	0,7	0,6	0,2%	49,2	
BioLNG (Organic waste) (DF low-pressure 2 stroke)	13,8	0,68	0	0,61	0,61	1,3	1,1	1,7%	49,2	
BioLNG (Organic waste) (DF low-pressure 4 stroke)	13,8	0,68	0	1,13	1,13	1,8	1,5	3,1%	49,2	

* Biodiesel includes LUC in this example

** CH4 slip for LNG and biomethane, as a fraction of fuel consumption for different engines, based on the data from IMO 4th GHG study.

*** Only CO₂ emissions and methane slip are included for this example; N₂O emissions from NH₃ combustion is not well-understood for now, but the methodology is flexible and can be later added once more data becomes available.

revet

- ----

INTERSESSIONAL MEETING OF THE WORKING GROUP ON REDUCTION OF GHG EMISSIONS FROM SHIPS 7th session Agenda item 2

ISWG-GHG 7/2/26 18 September 2020 ENGLISH ONLY

Ε

FURTHER CONSIDERATION OF CONCRETE PROPOSALS TO IMPROVE THE OPERATIONAL ENERGY EFFICIENCY OF EXISTING SHIPS, WITH A VIEW TO DEVELOPING DRAFT AMENDMENTS TO CHAPTER 4 OF MARPOL ANNEX VI AND ASSOCIATED GUIDELINES, AS APPROPRIATE

Proposal for a mandatory goal-based technical and operational short-term measure with combination of EEXI, SEEMP, CII and rating mechanism

Submitted by China, Croatia, Denmark, France, Germany, Ghana, India, Italy, Japan, Nigeria, Norway, Singapore, Spain, United Arab Emirates and ICS

	SUMMARY					
Executive summary:	This document contains a proposal to combine the measures submitted by documents ISWG-GHG 7/2/6, ISWG-GHG 7/2/9, ISWG-GHG 7/2/14 and ISWG-GHG 7/2/21					
Strategic direction, if applicable:	3					
Output:	3.2					
Action to be taken:	Paragraph 32					
Related documents:	ISWG-GHG 7/2/6, ISWG-GHG 7/2/7, ISWG-GHG 7/2/9, ISWG-GHG 7/2/14 and ISWG-GHG 7/2/21					

Introduction

1 The Marine Environment Protection Committee, at its seventy-fourth session (13 to 17 May 2019), instructed the Working Group on Reduction of GHG Emissions from Ships at its sixth and seventh intersessional meeting (ISWG-GHG 6 and ISWG-GHG 7) to further consider concrete proposals to improve the operational energy efficiency of existing ships, to develop draft amendments to Chapter 4 of MARPOL Annex VI and associated Guidelines, as appropriate. This document is submitted in accordance with paragraph 9 of Circular Letter No.4181/Rev.1 on the Resumption of the seventh session of the Intersessional Working Group on Reduction of GHG Emissions from Ships (ISWG-GHG 7).

I:\MEPC\ISWG-GHG\7\ISWG-GHG 7-2-26.docx

SHORT TERM MEASURES AGREED ON INTERSESSIONAL 19-23 OCTOBER TO BE CONFORMED BY MEPC IN NOVEMBER

CO-SPONSORED BY:

China, Croatia, Denmark, France, Germany, Ghana, India, Italy, Japan, Malaysia, Nigeria, Norway, Republic of Korea, Singapore, Spain, United Arab Emirates, ICS

Senter for forskningsdrevet innovasjon

Part A: Agreement part

A ship's GHG emissions and Cii rating is a function of its (1) design, (2) fuel carbon content and (3) operation.

Synthetic E-fuels

- Synthetic electro-fuels or E-fuels are gaseous or liquid fuels from hydrogen and captured carbon using renewable electricity
- They have high energy efficiency and are compatible with and blends easily: for example MGO & E-diesel or LNG & E-LNG
- No need for new infrastructure or bunkering facilities in contrast to Hydrogen and Ammonia
- Can be used on existing vessels
- No need for additional crew training

Figure Source: The Royal Society (2019)

To evaluate the alternative options we compare their:

- GHG reduction
- Energy consumption
- Abatement Cost

Which enables a holistic assessment and that the solutions which are best to reach global objectives are selected

Assessment of Fuels based on GHG reduction potential

Well-to-Wake Emissions in Gram CO2eq. per kWh - GWP100

Assessment of Fuels based on energy used WTW per kWh delivered for propulsion

Total energy input WTW / Delivered propulsion energy (kWh/kWh)

E-fuels require large amount of Renewable Electricity – will these quantities become available?

Coal accounts for 40 % of man-made CO_2 emissions, of which 2/3 are used in power plants to produce electricity (65% of electricity is fossil)

Energy ballance electricity production - M.toe

23

Why use renewable electricity to produce E-fuels for shipping, when global GHG emissions can be reduced 5 - 10 more times per kWh by instead replacing coal fired power plants

Senter for

orges forskningsråd

forskningsdrevet innovasion

Fuel costs projections

Techno-economic assessment of zero-carbon fuels.

Fuel Price Projections 2020-2050 - Lower bound (USD/Gj) from Lloyd's Register and UMAS (2020) <mark>1 – 4 - 10</mark>

Primary energy source	Fuel	2020	2030	2040	2050
Oil	LSHFO	8	<mark>11</mark>	11	11
Biomass	Bio-Diesel	22	24	27	29
Biomass	Bio-methanol wood	23	25	27	30
Biomass	Bio-methanol waste stream	19	21	23	25
Substitution price from	biofuels	9	19	26	33
Renewable electricity	E-diesel	130	<mark>114</mark>	99	83
Renewable electricity	E-methanol	84	73	63	52
Renewable electricity	E-LNG	69	60	51	42
Renewable electricity	E-ammonia	55	<mark>47</mark>	39	30
Renewable electricity	E-hydrogen	52	44	36	28
Natural gas	NG-ammonia	28	26	24	23
Natural gas	NG-hydrogen	25	23	21	19

Reference: Techno-Economic Assessment of Zero-Carbon Fuels (Lloyd's Register and UMAS, March 2020).

Price estimates IEA 2019 Hydrogen report

Notes: $NH_3 = ammonia.$; renewable electricity price = USD 50/MWh at 3 000 full load hours in near term and USD 25/MWh in long term; CO_2 feedstock costs lower range based on CO_2 from bioethanol production at USD 30/t CO_2 in the near and long term; CO_2 feedstock costs upper range based on DAC = USD 400/t CO_2 in the near term and USD 100/t CO_2 in the long term; discount rate = 8%. More information on the underlying assumptions is available at <u>www.iea.org/hydrogen2019</u>.

Source: IEA 2019. All rights reserved.

E fuele and	Annu
E-IUEIS and	Annu
synthethic E	Cost
Synthetine L-	
fuel	Opera
calculations	
(Lindstad et al	
2021)	Hydro

					Present	Future				
Annual operating hours with NG				5000	5000	hours				
Annual operating hours with electricity					5000	5000	hours			
Cost per kWh of	NG				0.025	0.025	USD/kWh			
Cost per kWh of	Electricity				0.060	0.020	USD/kWh			
Capex and Opex	DAC (Direc	t carbon ca	pture from	air)	0.20	0.10	USD per k	g of CO2		
Operational ener	rgy needed	for DAC			2.60	1.50	kWh/kg of	CO2		
				WTW Input/	Annual	Annual	Total		Present	Future
				Output -	Capex +	cost of	annual	Cost per	cost USD	Cost
		Input	Output	MJ/MJ	Opex	Energy	cost	MWh	per GJ	USD/GJ
	MGO	510	per ton	500	per toe			43	12.0	12.0
	VLSFO	430	per ton	440	per toe			38	10.5	10.5
	LNG	445	per ton	380	per toe			32	9.0	9.0
	NG	345	per ton	295	per toe			25	7.0	7.0
Hydrogen	NG	100 %	76 %	3.2	134	166	300	60	16.7	16.7
	Electricity	100 %	69 %	3.5	103	435	538	108	29.9	13.8
Liquid Hydrogen	NG	76 %	53 %	4.5	45	428	473	95	26.3	26.3
	Electricity	69 %	48 %	5.0	42	768	810	162	45.0	22.0
Ammonia	NG	76 %	63 %	3.8	113	361	474	95	26.4	26.4
	Electricity	69 %	57 %	4.2	102	648	750	150	41.6	22.2
E-LNG	Electricity	69 %	46 %	5.2	103	803	906	181		
	DAC		7 %		242	136	378	76	5.	
		69 %	40 %	6.1		939	1284	257	71.3	32.0
E-Diesel	Electricity	69 %	43 %		106	862	969	194	· ·	
	DAC		9 %		327	230	556	111		
		69 %	34 %	7.1		1092	1525	305	84.7	36.3
E-Methanol	Electricity	69 %	46 %	5.2	68	810	878	176		
	DAC		9 %		316	191	507	101		
		69 %	37 %	6.5		1001	1385	277	76.9	32.2

Comparing the values found in the quoted studies

- LR & UMAS ratios compared to VLSFO are (1-3-4-8)
- IEA and Lindstad ratios compared to VLSFO are (1-2-3-3)
- World Bank (2021) study are based on LR & UMAS and favour ammonia
- If Lindstad are correct, Synthetic Efuels are competitive when all costs are included

			IEA -	This study	Ratio compared to
		LR & UMAS	Hydrogen	-Lindstad	VLSFO (Lindstad et
	All cost USD per GJ	2020	2019	et al 2021	al. 2021)
AS IS	VLSFO	8		11	
	E-Ammonia	55	39	42	4
	E-LNG	69	72	71	7
	E-Diesel	130	83	85	8
	E-fuel cost in % of IEA	131 %	100 %	102 %	
TO BE	VLSFO	11		11	
	E-Ammonia	30	17	22	2
	E-LNG	42	33	32	3
	E-Diesel	83	36	36	3
	E-fuel cost in % of IEA	180 %	100 %	105 %	

Assessment of fuel comparing annual fuel cost in USD per kW installed main engine (170gram/kWh*24*237days/1000*0.6 gives approximately 600 kg per kW)

With low electricity prices, Synthetic E-fuels (which can be used on the existing fleet) will probably come at similar abatement cost as E-hydrogen and E-ammonia

Main observations regarding E- fuels

- Total Renewable electricity today 588 Mtoe, 25 % of global electricity is Green
- Making Electricity Green (keeping 10% nuclear) 588 Mtoe * 65% / 25% = 1500 Mtoe
- Replacing Fossil in cars, trucks and buses 14 207 * 20 % (share of total) * 50% (improve energy utilization) = 1500 Mtoe
- (1500 + 1500 Mtoe) / 588 = 588 %, which implies that Global renewable has to increase with 500 % from 588 to 3588 Mtoe just to replace coal and fossil cars trucks and buses
- If Shipping shall contribute to reducing Global warming it can best do so by improving energy efficiency → Using less energy per ton nm

The Role of Wind Assisted Propulsion

- Fuel saving from expanding length with 10 15% to enable more slender hull, is around 15% for General Cargo, Tank and Bulk from 1 000 – 125 000 dwt
- Wind assisted propulsion gives an additional 10 15% reduction
- 3. By including CP-Propeller and more flexible power solutions around 30% reduction of fuel and GHG are within reach
 - a) So far research and development projects have tended to focus on each of these ones separately and not on the whole.
 - b) We now propose a Integrated KPN project with SINTEF Ocean as the host as presented in the next slides with the ambition of reaching this 30% potential reduction of fuel (energy) and GHG emissions.

Wind assisted propulsion on a Slender Bulker designed to utilize the wind: source SINTEF Ocean

https://www.forskningsradet.no/sok-om-finansiering/gronn-plattform/

Grønn plattform

Grønn plattform er en ny satsing som gir bedrifter og forskningsinstitutter støtte til forsknings- og innovasjonsdrevet grønn vekst. Vi er ute etter samarbeidskonsortier som kan levere de beste prosjektene, fra forskning og teknologiutvikling, frem til ferdige løsninger. Hensikten er å skape grønne jobber og en mer bærekraftig fremtid. Første fase i Grønn plattform er 1 milliard kroner fordelt over tre år.

Examples of fuel savings claims

GREEN PLATFORM: WIND

Wind-driven Innovative Norwegian ship Designs

KNOWLEDGE-BUILDING PROJECT

Project owner: SINTEF Ocean Leader: Elizabeth Lindstad

WORKPACKAGES

WP1: Wind & sail model development

WP2: Hull & propeller design

WP3: Seakeeping & manoeuvrability

WP4: Ship system integration (wind/hull/propeller/machinery/ICS)

WP5: Best practices, rules & regulations for performance validation

WP6: Ship routing & scheduling to utilise wind

WP7: Results exploitation & Green Platform coordination

Total Budget: 30MNOK

INDUSTRY PROJECT

Project Owner: Klaveness Project leader: Trond Johnsen, SINTEF Ocean

SUB-PROJECTS

SP1: Newbuild Coastal bulker

SP2: Newbuild – Car carrier – VINDSKIP

SP3: Newbuild Combination Carrier

SP4: Retrofit Combination Carrier

SP5: Retrofit – Tanker.

SP6: Retrofit – Car carrier

SP7: Retrofit - Drybulk, Gen.Cargo

SP8: Cruise

Total Budget Industry project: 60-120 MNOK Public Funding: 30-70MNOK

Questions and Discussion

Thank You!

